Stability for Rayleigh–Benard Convective Solutions of the Boltzmann Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability for Rayleigh - Benard convective solutions of the Boltzmann equation

We consider the Boltzmann equation for a gas in a horizontal slab, subject to a gravitational force. The boundary conditions are of diffusive type, specifying the wall temperatures, so that the top temperature is lower than the bottom one (Benard setup). We consider a 2-dimensional convective stationary solution, which is close for small Knudsen number to the convective stationary solution of t...

متن کامل

Exponential Stability of the Solutions to the Boltzmann Equation for the Benard Problem

We complete the result in [2] by showing the exponential decay of the perturbation of the laminar solution below the critical Rayleigh number and of the convective solution above the Rayleigh number, in the kinetic framework.

متن کامل

Shock Profile Solutions of the Boltzmann Equation*

Shock waves in gas dynamics can be described by the Euler Nav ie r Stokes, or Boltzmann equations. We prove the existence of shock profile solutions of the Boltzmann equation for shocks which are weak. The shock is written as a truncated expansion in powers of the shock strength, the first two terms of which come exactly from the Taylor tanh (x) profile for the Navie r Stokes solution. The full...

متن کامل

Interfacial Solutions of the Poisson-Boltzmann Equation

The linearized Poisson-Boltzmann equation is considered for boundary conditions corresponding to a fixed point-charge ion near the planar boundary between an electrolytic solution and a dielectric substrate. Use of the Fourier expansion for this fixed charge density allows the mean potential to be synthesized in the form of a simple quadrature. Subsequently, it is possible to compute the revers...

متن کامل

Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems

Analytic solutions F (v, t) of the nonlinear Boltzmann equation in ddimensions are studied for a new class of dissipative models, called inelastic repulsive scatterers, interacting through pseudo-power law repulsions, characterized by a strength parameter ν, and embedding inelastic hard spheres (ν = 1) and inelastic Maxwell models (ν = 0). The systems are either freely cooling without energy in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2010

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-010-0292-z